AP Statistics
Unit 03 - Designing Experiments
Homework \#5

Name
Period
\qquad
\qquad

Page 264 \#87-96
87. C
88. B
89. B
90. D
91. C
92. D
93. B
94. B
95. a) For these seeds, the weights follow a $N(525,110)$ distribution and we want the proportion of seeds that weigh more than 500 mg .
$z=\frac{500-525}{110}=-0.23$

From Table A, the proportion of z -scores greater than -0.23 is 0.5910 .
Using technology, normalcdf($-0.23,10000)=0.5899$. About 59% of seeds will weigh more than 500 mg .
b) For these seeds, the weights follow a $\mathrm{N}(525,110)$ distribution and we are looking for the boundary value x that has an area of 0.10 to the left. A z-score of -1.28 gives the closest value to 0.1003 .

Solving -1.28 $=\frac{x-525}{110}$ gives $x=384.2$.

The smallest weight among the remaining seeds should be about 384 mg .
96. a) Fairly well, because there is a moderately weak (due to lack of many data points, otherwise it would be strong) linear relationship between the IQ's of the twins with a correlation of $r=0.91$.

b) Here is a dotplot of the difference in IQ (Twin B - Twin A). Because all but one of the differences are positive, Twin B (the one living in the higher-income homes) tends to have a higher IQ than Twin A.

