STEP	Sample Proportions	Sample Means
State	We want to find the true proportion of	We want to find the true mean of
	with% confidence.	with% confidence.
	$\hat{p} =$	$\bar{x} =$
Plan	Check the following conditions:	Check the following conditions:
	Bana da mar	Dava da ana
	Random: Check to make sure the sample was	Random: Check to make sure the sample was
	taken randomly.	taken randomly.
	10% condition : (allows us to calculate SE)	10% condition : (allows us to calculate SE)
	Check to make sure that 10 times our	Check to make sure that 10 times our
	sample is less than the entire population.	sample is less than the entire population.
	Large Counts:	Normal/Large:
	$n\hat{p} \ge 10$ $n\hat{q} \ge 10$	n ≥ 30
		If n < 30, we must look at a graph of our
		data:
		Rough sketch
		 No strong skewness No outliers
	Because our conditions are met, we will	Because our conditions are met, we will
	use a <u>1-proportion z-interval to estimate p</u> .	use a <u>1-sample t-interval to estimate μ</u> .
Do	First, calculate the critical value based on	First, calculate and list the following:
	your chosen confidence level.	
		df =
	On the calculator, choose:	$t_{df}^* = $
	2^{nd} DIST \rightarrow 3. invNorm(percentile)	where t* is the critical value calculated
		from the boundary of the confidence
		level chosen and from the degrees of
		freedom for the sample size chosen.
		On the calculator, choose:
		2^{nd} DIST \rightarrow 4. invT(percentile, df)
	Plug numbers into the following:	Plug numbers into the following:
	$\widehat{p} \pm z^* \sqrt{\frac{\widehat{p}\widehat{q}}{n}} = (\underline{\qquad}, \underline{\qquad})$	$\overline{x} \pm t^* \frac{S_x}{\sqrt{n}} = (_, _)$
		\sqrt{n}
Conclude	We are% confident that the interval	We are% confident that the interval
	from (,) captures the true	from (,) captures the true mean
	proportion of	of