STEP	Sample Proportions	Sample Means
State	We want to find the true proportion of \qquad with \qquad \% confidence. $\hat{p}=$	We want to find the true mean of \qquad with \qquad \% confidence. $\bar{x}=$
Plan	Check the following conditions: Random: Check to make sure the sample was taken randomly. 10% condition: (allows us to calculate SE) Check to make sure that 10 times our sample is less than the entire population. Large Counts: $\mathrm{n} \hat{p} \geq 10 \quad n \hat{q} \geq 10$	Check the following conditions: Random: Check to make sure the sample was taken randomly. 10% condition: (allows us to calculate SE) Check to make sure that 10 times our sample is less than the entire population. Normal/Large: $n \geq 30$ If $\mathrm{n}<30$, we must look at a graph of our data: - Rough sketch - No strong skewness - No outliers Because our conditions are met, we will use a l-sample t-interval to estimate μ.
Do	First, calculate the critical value based on your chosen confidence level. On the calculator, choose: $2^{\text {nd }}$ DIST \rightarrow 3. invNorm(percentile) Plug numbers into the following: $\widehat{\boldsymbol{p}} \pm \mathrm{z}^{*} \sqrt{\frac{\hat{p} \widehat{q}}{n}}=(\square, \square)$	First, calculate and list the following: $\begin{aligned} & \mathrm{df}= \\ & t_{d f}^{*}= \end{aligned}$ where t* is the critical value calculated from the boundary of the confidence level chosen and from the degrees of freedom for the sample size chosen. On the calculator, choose: $2^{\text {nd }}$ DIST \rightarrow 4. invT(percentile, $d f$) Plug numbers into the following: $\bar{x} \pm \dagger^{*} \frac{s_{x}}{\sqrt{n}}=\left(\square, \quad \square_{)}\right)$
Conclude	We are \qquad \% confident that the interval from (\qquad , __) captures the true proportion of \qquad .	We are \qquad \% confident that the interval from (\qquad) captures the true mean of \qquad .

