AP Statistics

Unit 04 – Probability

Name Period

Day 05 Notes - Discrete & Continuous Random Variables

Random Variable: takes numerical values that describe the outcomes of some chance process.

Probability Distribution: gives possible values of a random variable and their corresponding probability.

Example:

A probability model describes the possible outcomes of a chance process and the likelihood that those outcomes will occur. For example, suppose we toss a fair coin 3 times. The sample space for this chance process is

HHH

HHT

HTH

THH

HTT

THT

TTH

TTT

Because there are 8 equally likely outcomes, the probability is 1/8 for each possible outcome. Define the variable X = the number of heads obtained. The value of X will vary from one set of tosses to another but will always be one of the numbers 0, 1, 2, or 3. How likely is X to take each of those values? It will be easier to answer this question if we group the possible outcomes by the number of heads obtained:

X = 0:

TTT

X = 1:

HTT

THT

TTH

X = 2: X = 3:

HHT HHH HTH

THH

We can summarize the probability distribution of X as follows:

Value:	0	1	2	3	
Probability:	1/8	3/8	3/8	1/8	

Here is the probability distribution of X in graphical form.

(3 coin tosses)

1. What's the probability that we get exactly one head?

3/8

2. What's the probability that we get at least one head?

$$P(x > 1) = P(x = 1) + P(x = 2) + P(x) = 3$$

$$= 3/8 + 3/8 + 1/9 = 1/9$$
3. What's the probability that we get, at most, 1 head?

$$P(X \le 1) = P(X = 0) + P(X = 1)$$

$$= \frac{1}{2} \frac{1}{8} = \frac{1}{8} = \frac{1}{8} = \frac{1}{8} = \frac{1}{8}$$

There are two main types of random variables: discrete and continuous.

A **discrete random variable X** takes a fixed set of possible values with gaps between. The probability distribution of a discrete random variable X lists the values x_i and their probabilities p_i :

Value:	X ₁	X ₂	X 3	•••
Probability:	p ₁	p ₂	p ₃	

The probabilities pi must satisfy two requirements:

- 1. Every probability p_i is a number between 0 and 1.
- 2. The sum of the probabilities is 1: $p_1 + p_2 + p_3 + ... = 1$.

To find the probability of any event, add the probabilities pi of the particular values x_i that make up the event.

Example: Apgar Scores: Babies' Health at Birth

In 1952, Dr. Virginia Apgar suggested five criteria for measuring a baby's health at birth: skin color, heart rate, muscle tone, breathing, and response when stimulated. She developed a 0-1-2 scale to rate a newborn on each of the five criteria. A baby's Apgar score is the sum of the rating on each of the five scales, which gives a whole-number value from 0-10. Apgar scores are still used today to evaluate health of newborns.

What Apgar scores are typical? To find out, researchers recorded the Apgar scores of over 2 million newborn babies in a single year. Imagine selecting one of these newborns at random. (That's our chance process.) Define the random variable X = Apgar score of a randomly selected baby one minute after birth. The table below gives the probability distribution for X.

					- 25	di He					
Value:	0	1	2	3	4	5	6	7	8	9	10
Probability:	0.001	0.006	0.007	0.008	0.012	0.020	0.038	0.099	0.319	0.437	0.053
1102000011117											

a) Show that the probability distribution for X is legitimate.

b) Doctors decided that Apgar scores of 7 or higher indicate a healthy baby. What's the probability that a randomly selected baby is healthy?

$$P(X \ge 7) = P(x=1) + P(X=8) + P(X=9) + P(X=10)$$

= 0.099 +0.319 +0.437 +0.053
= 0.908
There is a 90.8%. Chance or randomly selecting a healthy baby.

CHECK YOUR UNDERSTANDING:

North Carolina State University posts the grade distributions for its courses online. Students in Statistics 101 in a recent semester received 26% A's, 42% B's, 20% C's, 10% D's, and 2% F's. Choose a Statistics 101 students at random. The student's grade on a four-point scale (with A = 4) is a discrete random variable X with this probability distribution:

	F	P	C	B	A
Value of X:	0	1	2	3	4
Probability:	0.02	0.10	0.20	0.42	0.26

1. Say in words what the meaning of $P(X \ge 3)$ is. What is this probability?

$$P(x7,3)$$
 is the probability that the student got either an A or a B. $P(x7,3) = 0.68$

2. Write the event "the student got a grade worse than C" in terms of values of the random variable X. What is the probability of this event?

Mean of a Discrete Random Variable μ_X :

an average of the possible values of x but with an important change to take into account the fact that not all Example: Winning (and Losing) at Roulette Outcomes may be equally likely.

On an American roulette wheel, there are 38 slots numbered 1 through 36, plus 0 and 00. Half of the slots from 1 to 36 are red; the other half are black. Both the 0 and the 00 slots are green. Suppose that a player places a simple \$1 bet on red. If the balls land in a red slot, the player gets the original dollar back, plus an additional dollar for winning the bet. If the ball lands in a different-colored slot, the player loses the dollar bet to the casino.

Let's define the random variable X = net gain from a single 1 bet on red. The possible values of X are -\$1 and \$1. (The player either gains a dollar or loses a dollar.) What are the corresponding probabilities? The chance that the ball lands in a red slot is 18/38. The chance that the ball lands in a different-colored slot is 20/38. Here is the probability distribution of X:

Value:	-\$1	\$1
Probability:	20/38	18/38

What is the player's average gain? The ordinary average of the two possible outcomes -\$1 and \$1 is \$0 But \$0 isn't the average winnings because the player is less likely to win \$1 than to lose \$1. In the long run, the player gains a dollar 18 times in every 38 games played and loses a dollar on the remaining 20 of 38 bets. The player's long-run average gain for this sample bet is

$$\mu_{\rm X} = (-\$1)(20/38) + (\$1)(18/38) = -\$0.05$$

You see that the player loses (and the casino gains) an average of five cents per \$1 bet in many, many plays of the game.

Expected Value/Mean of a Discrete Random Variable:

Suppose that X is a discrete random variable with probability distribution

Value:	X1	X ₂	X 3	
Probability:	p ₁	p_2	p ₃	•••

To find the **mean (expected value)** of X, multiply each possible value by its probability, then add all the products:

$$\mu_X = E(X) = x_1p_1 + x_2p_2 + x_3p_3 + ... = \sum x_ip_i$$

Example: Apgar Scores: What's Typical?

In our earlier example, we defined the random variable X to be the Apgar score of a randomly selected baby. The table below gives the probability distribution for X once again.

					00000						
Value x _i :	0	1	2	3	4	5	6	7	8	9	10
	0.001	0.006	0.007	0.008	0.012	0.020	0.038	0.099	0.319	0.437	0.053

Computer the mean of the random variable X. Interpret this value in context.

$$E(X) = 0.001 + 1.8.000 + 2.0.007 + 3.0.008 + 4.0.012 + 8.0.020$$

+ $0.038 + 7.0.099 + 8.0.319 + 9.0.437 + 10.0.053 = 8.128$
The mean Appar score of a randomly chosen newborn is 8.128.

Variance σ_X^2 and Standard Deviation σ_X of a Random Variable:

Suppose that X is a discrete random variable with probability distribution

Value:	X ₁	X ₂	X3	
Probability:	p ₁	p ₂	p ₃	•••

And that μ_X is the mean of X. The **variance** of X is

$$Var(X) = \sigma_X^2 = (x_1 - \mu_X)^2 p_1 + (x_2 - \mu_X)^2 p_2 + (x_3 - \mu_X)^2 p_3 + \dots = \Sigma (x_i - \mu_X)^2 p_i$$

The **standard deviation** of X, σ_X , is the square root of the variance.

$$\sigma_X = \sqrt{\Sigma (\mathbf{x}_i - \boldsymbol{\mu}_X)^2 \mathbf{p}_i}$$

EXAMPLE:

On Valentine's Day, the Quiet Nook restaurant offers a Lucky Lovers Special that could save couples money on their romantic dinners. When the waiter brings the check, he'll also bring the four aces from a deck of cards. He'll shuffle them and lay them out face down on the table. The couple will then turn one card over. If it's a black ace, they'll owe the full amount, but if it's the ace of hearts, the waiter will give them a \$20 Lucky Lovers Discount. If they first turn over the ace of diamonds, they'll then get to turn over one of the remaining cards, earning a \$10 discount for finding the ace of hearts this time. Based on the probability model for the size of Lucky Lovers discounts the restaurants will award, what's the expected discount for a couple?

- 1. List the expected value (X=the Lucky Lover's Discount)
- 2. List the probabilities of each event $P(x=20) = P(\text{of getting a heart}) = \frac{1}{4} \left(\frac{6}{4}\right) = \frac{1}{4} \left(\frac{1}{4}\right) = \frac{1}{4} \left$
- 3. Create a probability model (table or tree)

Outcome	Hearts	Diamond then heart	Black ace
Χ	\$20	\$10	\$0
P(x)	74	412	2/3

4. Calculate the expected value.

$$E(X) = 20(Y4) + 10(Y12) + 0(7/3)$$

$$= 5 + 0.83 + 0 = $5.83$$

5. Explain in words what your calculation means.

6. Calculate and interpret the standard deviation.

$$0 = \sqrt{(20-5.83)^{2} + (10-5.83)^{2} + (0-5.83)^{2}} = $8.62$$

Example: Apgar Scores: What's Typical?

In the last example, we calculated the mean Apgar score of a randomly chosen newborn to be μ_X = 8.128. The table below gives the probability distribution for X one more time:

Value x _i :	0	1	2	3	4	5	6	7	8	9	10
Probability p _i :	0.001	0.006	0.007	0.008	0.012	0.020	0.038	0.099	0.319	0.437	0.053
riobability pi	0.00.	0.000									

Compute and interpret the standard deviation of the random variable X.

$$\sigma_{x} = (0-8.128)^{2} \cdot 0.001 + (1-8.128)^{2} \cdot 0.006 + ... + (10-8.128)^{2} \cdot 0.053$$

$$= \sqrt{2.066} = 1.437$$
A randomly selected byby's Appar score will typically differ from the meanby about 1.437 units

Example: How Many Languages?

The mean number of languages spoken for a randomly selected US high school student to be μ_X = 1.457. The table below gives the probability distribution for X:

Languages:	1	2	3	4	5
Probabilities:	0.630	0.295	0.065	0.008	0.002

Compute and interpret the standard deviation of the random variable X.

$$\sigma_{x}^{2} = (1 - 1.457)^{2}(0.036) + (2 - 1.457)^{2}(0.295) + (3 - 1.457)^{2}(0.005)$$
+ $(4 - 1.457)^{2}(0.008) + (5 - 1.457)^{2}(0.002)$
= 0.450
 $\sigma_{x}^{2} = \sqrt{0.450}^{2} = 0.011$
The number of language spoken by a randomly selected U.S. high school student typically varies by about 0.671
from the mean.

CHECK YOUR UNDERSTANDING:

from the mean. A large auto dealership keeps track of sales made during each hour of the day. Let X = thenumber of cars sold during the first hour of business on a randomly selected Friday. Based on previous records, the probability distribution of X is as follows.

Cars sold:	0	1	2	3
Probabilities:	0.3	0.4	0.2	0.1

1. Compute and interpret the mean of X.

2. Compute and interpret the standard deviation of X. $(0-1.1)^2 \cdot 0.3 + (-1.1)^2 \cdot 0.4 + (2-1.1)^2 \cdot 0.2 + (3-1.1)^2 \cdot 0.1$ = 10.89 = 0.943 The number of cars sold on a randomly selected Friday will typically vary from the mean by 0.943 cars.

On a Calculator:

- 1. Start by entering the values of the random variable in L1 and the corresponding probabilities in L2.
- 2. To graph a histogram of the probability distribution:
 - a. Set up a stat plot with Xlist: L1 and Freq: L2.
 - b. Press GRAPH.
 - c. Adjust your window settings as necessary.
- 3. To calculate the mean and standard deviation of the random variable, use one-variable statistics with the values in L1 and the corresponding probabilities in L2.

The probability of x is described by a density curve. The probability of any event is the area under the density curve and above the values of x

All continuous probability models assign probability 0 to every individual outcome. Wat make

Example: Young Women's Heights

Normal Probability Distributions

The heights of young women closely follow the Normal distribution with mean μ = 64 inches and standard deviation σ = 2.7 inches. This is a distribution for a large set of data. Now choose one young woman at random. Call her height Y. If we repeat the random choice very many times, the distribution of values of Y is the same Normal distribution that describes the heights of all young women. What's the probability that a randomly chosen young woman has height between 68 and 70 inches?

STEP 1: State the distribution and the values of interest.

The height yof a randomly chosen young woman has the N(104,2.7) distribution. We want to find P(68 < Y < 70).

STEP 2: Perform calculations – show your work!

$$Z = \frac{68 - 64}{2.7} = 1.48$$

$$Z = \frac{70 - 64}{2.7} = 2.22$$

$$P(1.48 \le Z \le 2.22) = 0.0562$$

35-25-15 M 10 20 30 55, 5, 61, 64" 667 69, 4 72.1

upthe

event.

STEP 3: Answer the question.

There is about a 5.62% chance that a randomly chosen young woman has a height between 68 and 70!