2-Sample Confidence Intervals

STEP	Sample Proportions	Sample Means
State	We want to find the true difference in proportion of \qquad (include the order) with \qquad $\mathrm{p}_{1}=$ \qquad $\mathrm{p}_{2}=$ \qquad $\hat{p}_{1}=$ \qquad $\hat{p}_{2}=$ \qquad	We want to find the true difference in mean of \qquad (include the order) with \qquad \% confidence. $\begin{aligned} & \mu_{1}=\quad \mu_{2}= \\ & \bar{x}_{1}=\square \bar{x}_{2}=\ldots \end{aligned}$
Plan	Check the following conditions: Random: Check to make sure the samples were taken randomly and are independent. 10% condition: Check to make sure that 10 times our sample is less than the entire population FOR BOTH SAMPLES. Large Counts: $\begin{array}{ll} n_{1} \hat{p}_{1} \geq 10 & n_{1} \hat{q}_{1} \geq 10 \\ n_{2} \hat{p}_{2} \geq 10 & n_{2} \hat{q}_{2} \geq 10 \end{array}$ Because our conditions are met, we will use a 2-sample z-interval for difference of two proportions $p_{1}-p_{2}$ (or whatever order you subtracted).	Check the following conditions: Random: Check to make sure the samples were taken randomly and are independent. 10% condition: Check to make sure that 10 times our sample is less than the entire population FOR BOTH SAMPLES. Normal/Large: $\begin{aligned} & n_{1} \geq 30 \\ & n_{2} \geq 30 \end{aligned}$ If $\mathrm{n}<30$ for either sample, we must look at a graph of our data: - Rough sketch - No strong skewness - No outliers Because our conditions are met, we will use a 2-sample t-interval for difference of two means $\mu_{1}-\mu_{2}$ (or whatever order you subtracted).
Do	On the calculator, choose: $\text { STAT } \rightarrow \text { TESTS } \rightarrow \text { B: 2-PropZInt }$ x1: n1: x2: n2: C-Level: Calculate \qquad	On the calculator, choose: STAT \rightarrow TESTS \rightarrow 0: 2-SampTInt $\bar{x} 1$: Sx1: n1: $\bar{x} 2$: Sx2: n2: C-Level: Pooled: No Yes Calculate \qquad \qquad \qquad) Also include: df $=$ \qquad $t_{d f}^{*}=$ \qquad
Conclude	We are \qquad \% confident that the interval from (__, \qquad) captures the true difference in proportion of \qquad .	We are \qquad \% confident that the interval from (__, \qquad) captures the true difference in mean of \qquad .

