2-Sample Confidence Intervals

STEP	Sample Proportions	Sample Means
State	We want to find the true difference in	We want to find the true difference in mean
	proportion of (include the	of (include the order) with%
	order) with% confidence.	confidence.
	$p_1 = \ p_2 = \$	$\mu_1 = ____ \mu_2 = ___$
	$\hat{p}_1 = _ \hat{p}_2 = _$	$\overline{x}_1 = \underline{x}_2 = \underline{x}_2$
Plan	Check the following conditions:	Check the following conditions:
	Random : Check to make sure the samples were taken	Random : Check to make sure the samples were taken
	randomly and are independent.	randomly and are independent.
	10% condition:	10% condition:
	Check to make sure that 10 times our sample is less than the entire population FOR BOTH SAMPLES.	Check to make sure that 10 times our sample is less than the entire population FOR BOTH SAMPLES.
	Large Counts:	Normal/Large:
	$n_1 \hat{p}_1 \ge 10 \qquad n_1 \hat{q}_1 \ge 10$	$n_1 \ge 30$
	$n_2 \hat{p}_2 \ge 10 \qquad n_2 \hat{q}_2 \ge 10$	$n_2 \ge 30$
		If n < 30 for either sample, we must look at a graph of our data:
		Rough sketch
		No strong skewness
		No outliers
	Because our conditions are met, we will use a	Because our conditions are met, we will use a
	2-sample z-interval for difference of two	2-sample t-interval for difference of two
	proportions $p_1 - p_2$ (or whatever order you	$\frac{\text{means } \mu_1 - \mu_2 \text{ (or whatever order you}}{\text{subtracted}}$
	<u>subtracted).</u>	subtracted).
Do	On the calculator, choose:	On the calculator, choose:
	STAT → TESTS → B: 2-PropZInt	STAT → TESTS → 0: 2-SampTInt
	x1:	\overline{x} 1:
	n1:	Sx1:
	x2:	n1:
	n2:	$\overline{x}2$:
	C-Level:	Sx2:
	Calculate	n2:
		C-Level:
	(,)	Pooled: No Yes
		Calculate
		(,)
		Also include:
		df =
		$t_{df}^* = $
Conclude	We are% confident that the interval from (,) captures the true difference in properties of	We are% confident that the interval from (,) captures the true difference in
	proportion of	mean of