Chi Square – Homogeneity & Independence

STEP	Homogeneity	Independence
State	Ho: There is no difference in the distribution of (the categorical variable) for (several populations or treatments).	Ho: (Categorical variable #1) and (categorical variable #2) are independent in (the population of interest).
	H _A : There is a difference in the distribution of (the categorical variable) for (several populations or treatments).	H _A : (Categorical variable #1) and (categorical variable #2) are not independent in (the population of interest).
	α = (0.05 unless stated otherwise)	You can also write "There is an association between" or "there is not an association between"
		α = (0.05 unless stated otherwise)
Plan	Random: Check to make sure the samples were taken randomly and are independent.	Random : Check to make sure the sample was taken randomly or comes from a well-designed randomized experiment.
	10% condition : Check to make sure that 10 times our sample is less than the entire population FOR ALL SAMPLES.	10% condition : Check to make sure that 10 times our sample is less than the entire population.
	Large Counts: All expected counts must be at least 5. (row total * column total / table total) YOU MUST ACTUALLY LIST THESE! (you can list them by performing the test in your calculator and then looking at MATRIX B).	Large Counts: All expected counts must be at least 5. (row total * column total / table total) YOU MUST ACTUALLY LIST THESE! (you can list them by performing the test in your calculator and then looking at MATRIX B).
	Because our conditions are met, we will use a <u>Chi Square Test of Homogeneity.</u>	Because our conditions are met, we will use a <u>Chi Square Test of Independence.</u>
Do	On the calculator, choose:	On the calculator, choose:
	STAT \rightarrow TESTS \rightarrow C: χ^2 -Test	STAT \rightarrow TESTS \rightarrow C: χ^2 -Test
	WRITE:	WRITE:
	$\chi^2 = (1^{st} \text{ term}) + (2^{nd} \text{ term}) + (3^{rd} \text{ term}) + \dots$	χ² = (1 st term) + (2 nd term) + (3 rd term) +
	Test statistic:	Test statistic:
	df = (# of rows - 1)(# of columns - 1)	df = (# of rows - 1)(# of columns - 1)
	p-value:	p-value:
Conclude	Because our P-value = is greater/less than the significance level α =, we (fail to) reject H ₀ . There is (not) convincing evidence that (alternative hypothesis).	Because our P-value = is greater/less than the significance level α =, we (fail to) reject H ₀ . There is (not) convincing evidence that (alternative hypothesis).

Good rule of thumb for telling the difference:

Homogeneity – Multiple samples being compared from different populations. Independence – One sample categorized with variables compared.