Regression Inference

STEP	Confidence Interval	Significance Test	
State	We want to estimate the slope eta of the	$H_0: \beta = 0$	
	population (or true) regression line relating	H _A :β (<, >, ≠) 0	
	to with% confidence.	Where β is the slope of the population	
		regression line relating to	
Plan	Suppose we have n observations on an	$\alpha = _$ (0.05 unless stated otherwise) Suppose we have n observations on an	
T GT	explanatory variable x and a response	explanatory variable x and a response	
	variable y. Our goal is to study or predict the	variable y. Our goal is to study or predict the	
	behavior of y for given values of x.	behavior of y for given values of x.	
	Check LINER.	Check LINER.	
	Linear: The actual relationship between x and	Linear: The actual relationship between x and	
	y is linear.	y is linear.	
	Independent – Individual observations are	Independent – Individual observations are	
	independent of each other. When sampling	independent of each other. When sampling	
	without replacement, check the 10% condition:	without replacement, check the 10% condition:	
	Check to make sure that 10 times our sample is	Check to make sure that 10 times our sample is	
	less than the entire population.	less than the entire population.	
	Normal: For any fixed value of x, the response	Normal: For any fixed value of x, the response	
	y varies according to a Normal distribution.	y varies according to a Normal distribution.	
	Equal SD: The standard deviation of y (call it σ)	Equal SD: The standard deviation of y (call it σ)	
	is the same for all values of x.	is the same for all values of x.	
	Random: The data come from a well-designed	Random: The data come from a well-designed	
	random sample or randomized experiment.	random sample or randomized experiment.	
	Because our conditions are met, we will use a	Because our conditions are met, we will use a	
	<u>t-interval for the slope of a regression line β.</u>		
Do	On the calculator, choose:	On the calculator, choose:	
	STAT → TESTS → G: LinRegTInt	STAT → TESTS → F: LinRegTTest	
	df =	df =	
	(,)	test statistic =	
		p-value =	
	(use the equation in the notes if you are given	(use the equation in the notes if you are given	
	a Minitab Output)	a Minitab Output)	
Conclude	We are% confident that the interval from	Because our P-value = is greater/less than	
	(,) captures the slope of the	the significance level $\alpha = $, we (fail to) reject	
	population (or true) regression line relating to .	H ₀ . There is (not) convincing evidence that (alternative hypothesis).	
	IV		

Remember that df = n - 2

Minitab Output					
Predictor	Coef	SE Coef	Т	Р	
Constant	(y-int)				
Variable	(slope)	(SE)	(test statistic)	(p-value)	
S =	R-Sq =		R-Sq(adj) =		