Regression Inference

STEP	Confidence Interval	Significance Test
State	We want to estimate the slope β of the population (or true) regression line relating \qquad to \qquad with __\% confidence.	$\begin{aligned} & \mathrm{H}_{\mathrm{O}}: \beta=0 \\ & \mathrm{H}_{\mathrm{A}}: \beta(<,>, \neq) 0 \end{aligned}$ Where β is the slope of the population regression line relating \qquad to \qquad $\alpha=\quad$ (0.05 unless stated otherwise)
Plan	Suppose we have n observations on an explanatory variable x and a response variable y. Our goal is to study or predict the behavior of y for given values of x. Check LINER. Linear: The actual relationship between x and y is linear. Independent - Individual observations are independent of each other. When sampling without replacement, check the $\mathbf{1 0 \%}$ condition: Check to make sure that 10 times our sample is less than the entire population. Normal: For any fixed value of x, the response y varies according to a Normal distribution. Equal SD: The standard deviation of y (call it σ) is the same for all values of x. Random: The data come from a well-designed random sample or randomized experiment. Because our conditions are met, we will use a t-interval for the slope of a regression line β.	Suppose we have n observations on an explanatory variable x and a response variable y. Our goal is to study or predict the behavior of y for given values of x. Check LINER. Linear: The actual relationship between x and y is linear. Independent - Individual observations are independent of each other. When sampling without replacement, check the $\mathbf{1 0 \%}$ condition: Check to make sure that 10 times our sample is less than the entire population. Normal: For any fixed value of x, the response y varies according to a Normal distribution. Equal SD: The standard deviation of y (call it σ) is the same for all values of x. Random: The data come from a well-designed random sample or randomized experiment. Because our conditions are met, we will use a
Do	On the calculator, choose: STAT \rightarrow TESTS \rightarrow G: LinRegTInt $\mathrm{df}=$ \qquad (use the equation in the notes if you are given a Minitab Output)	On the calculator, choose: STAT \rightarrow TESTS \rightarrow F: LinRegTTest $\mathrm{df}=$ test statistic $=$ p-value = (use the equation in the notes if you are given a Minitab Output)
Conclude	We are \qquad \% confident that the interval from (__, \qquad) captures the slope of the population (or true) regression line relating \qquad to \qquad	Because our P -value $=$ \qquad is greater/less than the significance level $\alpha=$ \qquad , we (fail to) reject H_{0}. There is (not) convincing evidence that (alternative hypothesis).

Remember that $\mathbf{d f}=\mathbf{n - 2}$

Minitab Output Predictor Constant	Coef (y-int)	SE Coef	T	P
Variable S =	(slope)	(SE)	(test statistic) R-Sq $=$	(p-value)

