
1. The following table shows the federal debt for the years since 1979.

Year	Federal Debt (in trillions of \$)
1	0.909
2	0.994
3	1.1
4	1.4
5	1.6
6	1.8
7	2.1
8	2.3
9	2.6
10	2.9
11	3.2
12	3.6

- a) Construct a scatterplot on the grid provided.
- b) Transform the data using the appropriate logarithms. Then, perform least squares regression on the transformed data. Write the LSRL equation for the transformed data.
- c) What is the correlation coefficient?
- d) What is the coefficient of determination? Interpret this value in context.
- e) Perform an inverse transformation on your linear equation to obtain an exponential model for the original federal debt data. Write the equation for this model.
- f) Use the model to predict the federal debt in the year 2000. Is it appropriate to do so?
- g) What is the residual value for the federal debt in 1988?