## **AP Statistics**

Unit 02 – Bivariate Data Homework #4 Name\_

Page 789 # 42-49

42. a) The relationship is strong, negative, and curved with no outliers.



**b)** Because the scatterplot of In(intensity) vs. depth is fairly linear, this model is appropriate.

c)  $\widehat{ln(y)} = 6.789 - 0.333(x)$ , where y is the light intensity in lumens and x is the depth (meters).

**d**)  $\widehat{ln(y)} = 6.789 - 0.333(12) = 2.793$ , so  $\widehat{y} = e^{2.793}$  lumens.

43. a) Exponential, because the scatterplot of log(height) vs. bounce number is more linear.

**b)** log(y) = 0.45374 - 0.11716 (x), where y = height in feet and x = bounce number.

**c)**  $\widehat{log(y)} = 0.45374 - 0.11716$  (7) = -0.36638 so  $\hat{y} = 10^{-0.36638} = 0.43$  feet.

**d)** The trend in residual plot suggests that the residual for x = 7 would be positive, meaning that the predicted height will be less than the actual height.

44. a) Power, because the scatterplot of log(abundance) vs. log(body mass) is more linear.

**b)** log(y) = 1.9503 - 1.0481\*log(x), where y = abundance (per 10000 kg of prey) and x = body mass (kg).

**c)**  $\widehat{log(y)} = 1.9503 - 1.0481 \log(92.5) = -0.1104$ , so  $\hat{y} = 10^{-0.1104} = 0.7755$  per 10000 kg of prey.

**d)** Because there are no leftover patterns in the residual plot, the power model is appropriate for these data.

**45. a)** There is a strong, positive, curved relationship between heart weight and length of left ventricle for mammals.



**b)** Two scatterplots are given below. Because the relationship between In(weight) and In(length) is roughly linear, heart weight and length seem to follow a power model.



c)  $\widehat{ln(y)} = -0.314 + 3.1387*ln(x)$ , where y is the weight of the heart and x is the length of the cavity of the left ventricle.

**d**)  $\widehat{ln(y)} = -0.314 + 3.1387*\ln(6.8) = 5.703$ , so  $\widehat{y} = e^{5.703} = 299.77$  grams.

46. a) There is a strong, positive, slightly curved relationship between height and distance.



**b)** Two scatterplots are given below. Because the relationship between In(distance) and In(height) is roughly linear, distance and height seem to follow a power model.



c) The equation is  $\widehat{ln(y)} = 3.7514 + 0.5152*\ln(x)$ , where y is the distance and x is the height.

**d)** If the ramp height was 700,  $\widehat{ln(y)} = -0.314 + 3.1387*\ln(700) = 7.1265$  and  $\widehat{y} = e^{7.1265} = 1244.51$  units.

**47.** C

- **48**. E
- **49.** E