AP Statistics
Unit 02 REDO - Day 01 Notes
Scatterplots:
Name
Period

Include:

Describe using:
Form:

Direction:

Strength:

Correlation:

Correlation Coefficient (r):

Coefficient of Determination $\left(R^{2}\right)$:

Three ways to find the LSRL equation:

METHOD \#1: Using a list of data points:

1. Put data in L1 and L2 of your calculator
2. STAT > CALC >
3. $\operatorname{LinReg}(a+b x)$
4. Place a and b values into your equation and be sure to write your equation with Y-HAT and IN CONTEXT.

METHOD \#2: Using

 calculated values for mean, standard deviation, and r.1. Use the equations on the equation sheet to calculate a and b.
2. Place a and b values into your equation and be sure to write your equation with Y-HAT and IN CONTEXT.

METHOD \#3: Using a MiniTab Output:

1. Identify a and b. The value of a can be found in the Constant row, Coef column. The value of b can be found in the Variable row, Coef column.
2. Place a and b values into your equation and be sure to write your equation with Y-HAT and IN CONTEXT.

METHOD \#1 EXAMPLE: Create the LSRL for predicting number of bags of dog food used per month based on the number of dogs a person owns. Use the data table below.

\# of dogs	Bags of dog food used/month
1	3
2	6
3	8
2	7
3	10
4	11
5	15
5	15
4	12
3	9
6	17
9	25
8	24
7	20

METHOD \#2 EXAMPLE: Create the LSRL for predicting number of bags of dog food used per month based on the number of dogs a person owns. Use the values below.
$\bar{x}=$
$\mathrm{s}_{\mathrm{x}}=$
$\bar{y}=$
$s_{y}=$
$r=$

METHOD \#3 EXAMPLE: Create the LSRL for predicting number of bags of dog food used per month based on the number of dogs a person owns. Use the MiniTab Output below.

Predictor	Coef	SE Coef	T	P
Constant	0.6362	whatevs	whatevs	whatevs
Bags	2.7918	whatevs	whatevs	whatevs
S = whatevs	R-Sq $=0.9902$		R-Sq(adj) $=$ whatevs	

Other important things:

Calculating \& Interpreting Residuals:

residual $=$ observed value - predicted value
EXAMPLE: Calculate and interpret the residual value for a person who owns 7 dogs.

Residual Plot:

Influential Point:

Extrapolation:

EXAMPLE: Would it make sense to use our model to predict the number of bags of dog food needed for a person who has 49 dogs? Why or why not?

Interpreting slope and y-intercept:

EXAMPLE:

Slope:
y-intercept:

